.. _Build NeurEco Regression model with the Python API: Build NeurEco Regression model with the Python API ######################################################## To build a NeurEco Regression model in Python API, import **NeurEcoTabular** library: .. code-block:: python from NeurEco import NeurEcoTabular as Tabular Initialize a NeurEco object to handle the **Regression** problem: .. code-block:: python model = Tabular.Regressor() Call method **build** with the parameters set for the problem under consideration: .. code-block:: python model.build(input_data, output_data, validation_input_data=None, validation_output_data=None, write_model_to="", valid_percentage=33.33, use_gpu=False, inputs_scaling=None, inputs_shifting=None, outputs_scaling=None, outputs_shifting=None, inputs_normalize_per_feature=None, outputs_normalize_per_feature=None, initial_beta_reg=0.1, gpu_id=0, links_maximum_number=0, checkpoint_to_start_build_from="", start_build_from_model_number=-1, freeze_structure=False, checkpoint_address="", validation_indices=None, disconnect_inputs_if_possible=True, final_learning=True) :input_data: numpy array, required. Numpy array of training input data. The shape is :math:`(m,\ n)` where :math:`m` is the number of training samples, and :math:`n` is the number of input features. :output_data: numpy array , required. Numpy array of training target data. The shape is :math:`(m,\ n)` where :math:`m` is the number of training samples, and :math:`n` is the number of output features. :validation_input_data: numpy array, optional, default = None. Numpy array of validation input data. The shape is :math:`(m,\ n)` where :math:`m` is the number of validation samples, and :math:`n` is the number of input features. :validation_output_data: numpy array , optional, default = None. Numpy array of validation target data. The shape is :math:`(m,\ n)` where :math:`m` is the number of validation samples, and :math:`n` is the number of output features. :write_model_to: string, optional, default = None. Path where the model will be saved. :links_maximum_number: int, optional, default = 0, specifies the maximum number of links (trainable parameters) that NeurEco can create. If set to zero, NeurEco will ignore this parameter. Note that this number will be respected in the limits of what NeurEco finds possible. :validation_indices: numpy array or list, optional, default = None. List of indices of the samples to be used as validation samples, in the training data. If the value is not None, the field valid_percentage will not be used. The lowest accepted index is 1, while the highest is the number of samples :valid_percentage: float, optional, default is 33.33%. Percentage of the data that NeurEco will select to use as validation data. The minimum value is 10%, the maximum value is 50%. Ignored when **validation_indices** or **validation_input_data** and **validation_output_data** are provided. :use_gpu: boolean, optional, default is False. True if GPU will be used for the build. :gpu_id: int, optional, default is 0. id of the GPU card to use when use_gpu=True and multiple cards are available. :inputs_shifting: string, optional, default = 'auto'. Possible values: 'mean', 'min_centered', 'auto', 'none'. See :std:ref:`Normalizing the data` for more details. :inputs_scaling: string, optional, default = 'auto'. Possible values: 'max','max_centered', 'std', 'auto', 'none'. See :std:ref:`Normalizing the data` for more details. :outputs_shifting: string, optional, default = 'auto' for Regression. Possible values: 'mean', 'min_centered', 'auto', 'none'. See :std:ref:`Normalizing the data` for more details. :outputs_scaling: string, optional, default = 'auto' for Regression. Possible values:'max','max_centered', 'std', 'auto', 'none'. See :std:ref:`Normalizing the data` for more details. :inputs_normalize_per_feature: bool, optional, default = True. See :std:ref:`Normalizing the data` for more details. :outputs_normalize_per_feature: bool, optional, default is False. See :std:ref:`Normalizing the data` for more details. :initial_beta_reg: float, optional, default = 0.1. The initial value of the regularization parameter. :checkpoint_to_start_build_from: default = "", path to the checkpoint file. When set, the build starts from the already existing model (for example, while using the same data, when the previous build has stopped for some reason; or by using additional/different data or settings) :start_build_from_model_number: int, default = -1, When resuming a build, specifies which intermediate model in the checkpoint will be used as starting point. when set to -1, NeurEco will choose the last model created as starting point. The model numbers should be in the interval [0, n[ where n is the total number of networks in the checkpoint. :freeze_structure: bool, default = False, When resuming a build, NeurEco will only change the weights (not the network architecture) if this variable is set to True. :checkpoint_address: string, optional, default = "". The path where the checkpoint model will be saved. The checkpoint model is used for resuming the build of a model, or for choosing an intermediate network with less topological optimization steps. :disconnect_inputs_if_possible: boolean, optional, default = True. NeurEco will always try to keep its model as small as possible without losing performance wise, so if it finds inputs that do not contribute to the overall performance, it will try to remove all links to them. Setting this parameter to False prevents NeurEco from disconnecting inputs. :final_learning: boolean, optional, default = True. If set to True, NeurEco includes the validation data into the training data at the very end of the learning process and attempts to improvement the results. :return: set_status: 0 if ok, other if not .. _Normalizing the data: Data normalization for Tabular Regression =========================================================== .. include:: ../../CommonParts/NormalizationTabularPerFeaturePython.rst .. include:: ../../CommonParts/NormalizationTabular.rst Particular cases of Build for a Tabular Regression =========================================================== .. _Select a model from a checkpoint and improve it Regression Python API: Select a model from a checkpoint and improve it ------------------------------------------------ .. include:: ../../CommonParts/Choose model and apply final learning python part1.rst It is possible to export the chosen model as it is from the checkpoint, see :std:ref:`Export NeurEco Regression model with the Python API`. .. include:: ../../CommonParts/Choose model and apply final learning Python part2.rst Limit the size of the NeurEco model during Build ------------------------------------------------------ Set the parameter **links_maximum_number** of the **build** method. .. include:: ../../CommonParts/Limit the size of the NeurEco model.rst